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Abstract — We address knowledge-free Bag-of-Tasks non-

preemptive scheduling problem on heterogeneous grids, where 

scheduling decisions are free from information of resources and 

application characteristics. We consider a scheduling with task 

replications to overcome possible random bad resource allocation 

and ensure good performance. We analyze energy consumption of 

job allocation strategies based on variations of the replication 

threshold. In order to provide QoS and minimize energy 

consumption, we perform a joint analysis of two metrics. A case 

study is given and corresponding results indicate that proposed 

strategies reduce energy consumption without significant 

degradation in performance. 

Keywords: Energy-Aware Scheduling; Knowledge-Free 

Scheduling; Desktop Grid; Green Peer-to-Peer Computing 

1. Introduction 

The increasing popularity and diversity of emerging 

distributed large-scale computing environment systems such 

as Peer-to-Peer (P2P) [21], Grids, and Clouds implies that 

their resource management must be able to adapt to changes 

in their state and requirements to meet desired Quality of 

Service (QoS) constraints. As systems scale and energy 

consumption increases, such new technologies have the 

power to damage our ecosystems. With the growth of 

computer components density, the cooling problem becomes 

also crucial, as more heat has to be dissipated per square 

meter. Another rising concern is the environmental impact in 

terms of carbon dioxide emissions caused by high energy 

consumption. Therefore, the reduction of power and energy 

consumption has become a first-order objective in the design 

of modern computing systems.  Moreover, energy 

consumption has become one of the main problems that the 

computer industry has faced due to increasing investment for 

maintaining the computers [1] and the reduction in 

performance due to increasing temperatures [2]. Further, a 

recent study estimates global data center energy consumption 

could increase 19%  this year [15]. Globally, the study 

identifies 31 GW of data center power consumption.  

Energy consumption is not only determined by hardware 

efficiency, but it is also dependent on the resource 

management system deployed on the infrastructure. 

The scheduling of jobs on multiprocessors is usually 

focused on the optimization of common performance criteria 

like total completion time, turnaround time, etc. It is 

generally well understood and has been studied for decades. 

Many research results exist for different variations of this 

scheduling problem; some of them provide theoretical 

insights while others give hints for the implementation of 

real systems. However, the power-aware multiple-single-

core-machine scheduling problem has rarely been addressed 

so far. Unfortunately, it may result in bad power utilization. 

There are several research efforts on power-aware 

resource allocation to optimize energy consumption at a 

single resource computer, a single cluster, or data center. The 

power usage reduction is achieved by two policies [3]:  

(1) Switching off parts of the computer system that are 

not utilized (dynamic component deactivation) [4, 22]; 

(2) Dynamic Voltage Scaling (DVS) to slow down the 

speed of CPU processing [2, 5]. 

These policies are designed to reduce the energy 

consumption of one resource, and not consider resources 

distributed geographically. Usually, they are integrated into 

resource management systems and scheduling algorithms 

[16]. 
We explore benefits of the first method for P2P desktop 

grids. This policy turns off/on machines so that only the 

minimum number of machines required to support the QoS 

for a given workload are kept active [6]. It can be 

implemented in standard high-performance processors 

without dynamic voltage scaling. However, some hardware 

support, such as a Wake-On-LAN network interface, is 

needed to signal a machine to transition from inactive to 

active state. This method can be implemented as a separate 

support server or local server software service to determine 

whether machines must be turned off or on. The scheduling 

mechanism must be aware of the state of the machines, so 

that it does not direct request to inactive nodes without 

turning them on first.  

Only few works consider the energy optimization in P2P 

grid computing, but none of them consider knowledge- free 

scheduling. Sharma and Aggarwal [2] used a statistical 

approach to predict workload energy consumption and used 

DVS to reduce it. Ponciano and Brasileiro [14] compared 

idle state, standby and hibernation effects on QoS and energy 

consumption. 

In this paper, we discuss knowledge free scheduling 

algorithms with QoS based on mean approximation factor. 



Hence, we study how our algorithms guarantee to generate a 

schedule with completion time being within a certain factor 

of the optimal solution. We analyze energy consumption of 

different grids considering variety of workloads to find a 

compromise between better QoS and energy consumption. 

We also evaluate scheduling algorithms to study 

relationships between replication, performance, and energy 

consumption. 

We continue this paper by presenting P2P desktop grid 

scheduling in Section 2. We introduce scheduling model and 

discuss scheduling algorithms in Section 3, where we also 

formally present related energy model. We discuss related 

work in Section 4. We present evaluation method for multi 

criteria analysis in Section 5. Experimental setups are 

presented in Section 6, while experimental results are 

analysed in Section 7. Finally, we conclude with a summary 

and an outlook in Section 8. 

2. Peer-to-Peer Desktop Grid Scheduling 

There exist various types of desktop grids depending on 

their platform (middleware or web based), their scale 

(Internet or local area network), architecture (centralized or 

distributed), and their service provider (enterprise or 

volunteer) [7]. The distributed, Internet, middleware based, 

and volunteer grids are also known as Peer-to-Peer Desktop 

Grids (P2P-DG). The main goal of such systems is to 

provide fast, scalable, and secure service [8]. P2P-DGs are 

very successful in bringing large numbers of donated 

computing systems together to form vast resource pools. 

However, achieving this goal is challenging because current 

Internet connectivity is far from ideal (due to firewalls and 

private addressing). Moreover new vulnerabilities appear on 

a daily basis.  

Low cost desktop grids are being developed to help with 

data processing from scientific projects, for instance, 

OurGrid [8], and ShareGrid [13]. These types of systems are 

suited to perform highly parallel computations such as Bag-

of-Tasks (BoT) applications that do not require any 

interaction between network participants. 

BoT applications simplify the system requirements since 

a task completion does not affect other tasks completion, 

meaning that the grid can deliver execution of applications 

without demanding any QoS guarantees from the resources. 

In spite of their simplicity, BoT applications are used in a 

variety of scenarios, including data mining, massive searches 

(such as key breaking), parameter sweeps, simulations, 

fractal calculations, computational biology, and computer 

imaging [8]. 

BoTs also simplifies the scheduling model by assuming a 

single core machine grid. BoT applications are being 

scheduled with knowledge-free algorithms, such as Work 

Queue with Replication (WQR) in real P2P-DGs [8, 13]. 

WQR uses no information about tasks nor machines and its 

performance is shown to be not significantly worse 

comparing with traditional knowledge-based schedulers [9]. 

However, it consumes more computational cycles, and, 

hence, volunteer computing resource donors are wasting 

energy. This kind of waste has a negative effect over the 

resource provider economy as well as the natural 

environment [1]. Moreover, taking into account the 

feasibility of offering cloud computing services that run over 

this kind of grids, and transforming computer resource 

donors into computer resource commercial providers [10], 

efficient energy management would reduce resource 

providing costs and increment the provider income. 

In this paper, we incorporate energy model to the WQR 

scheme, and perform a joint analysis of two metrics: 

approximation factor and energy consumption. That is, 

together with energy, we consider minimization of largest 

completion time of any job in the system to propose 

strategies that are able to reduce energy consumption without 

significant degradation in performance.  

3. Scheduling Model 

We use a model that focuses on some key aspects of P2P-

DG. It consists of a set   of   heterogeneous machines   , 

  , … ,   . The number of single core machines can be 

changed over time. Let    be the processing speed of 

machine  . Let   ∑   
 
    be the total speed of machines or 

total maximum grid processing power, and      be the 

maximum processing speed. The processing speed of 

machines is unknown. 

Addressing an offline scheduling problem:   tasks   ,   , 

…,   of a BoT must be scheduled on   uniform machines. 

Each task     is described by its execution time    on the 

slowest machine that is unknown until the task has 

completed its execution (non-clairvoyant case). The total 

execution time of the BoT is denoted by   ∑   
 
   , which 

is fixed for all experiments. The release date of tasks is zero. 

A task can be allocated to any machine. We consider that 

a task is assigned to specific machine only when it is actually 

available, no local machine waiting queues are considered. 

The start time and a completion time of a task   executed 

in machine   are denoted by   , and       
  

  
 

respectively. The completion time of a BoT is denoted by 

                    .  

The approximation factor of the strategy is defined as 

*
max

max

C

C
 , where *

maxC  is the optimal makespan.  

3.1. Scheduling strategies 

We apply WQR scheme proposed in [9]. We evaluated four 

knowledge free scheduling strategies: Work Queue (WQ), 

Work Queue with one Replica per task (WQR1), Work 

Queue with two Replicas per task (WQR2), Work Queue 

with three Replicas per task (WQR3).  

WQ is a basic scheme. The scheduler randomly allocates 

a task to an available machine until the BoT is empty. WQRx 

is based on WQ by adding x extra replicas for each task. The 

total number of tasks to be scheduled is       . When 



there are no more tasks to allocate, a randomly chosen 

running task is replicated and allocated to a machine. When a 

machine finishes a task (or replica), all replicas of the 

finished task are canceled. Replication is the key of reducing 

possible negative effect of bad job allocation on the total 

BoT completion. 

3.2. Energy model 

The power consumption   
        of a core   at time   

consists of a constant part           (power consumed in idle 

state) and a variable part          :  

  
                                            

where      if the core is on, otherwise      at time  , 

respectively, and if the core is in operational state at time   

        else        . 

When a core is off, it consumes no power; when it is on, 

it consumes           power, even if it is doing nothing. 

Therefore, the model assumes that power consumption of all 

system components is essentially constant regardless of the 

machine activity. Hence,           includes the power 

consumption of the core and the power consumption of all 

other components, including a cooling system. In addition, 

the core consumes a power           when the core is 

loaded (in operational mode).  

The power consumption   
           of a machine   at 

time   consists of a constant part              (power 

consumed in idle state) and a variable part   
    :  

  
                                 

          

           ∑  
          

 

   

  

Where: 

      {
                              
                                           

 (4) 

Hence 

           ∑     ( 
           

 

   

         
        

       
         ) 

 

(5) 

We consider a startup duration (latency to start up), 

corresponding with power consumption while turning on 

and off each component. Therefore, to be effective, a 

transition has to be done only if the idle period is long 

enough to compensate the transition overhead. In real 

systems, there is a limited or no knowledge of the future 

workload. 

For each of the   
             a machine is turned on, it 

is ready for operational mode after   
             time 

intervals consuming   
             power. 

The energy consumed by the grid is the sum of the 

energy it consumes for starting up (           ) its 

components and the energy it consumes while its 

operational state (       ). 

 

                        ,   (6) 

where:  

         ∑            
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(9) 

We follow a straightforward approach introduced in [4]: 

after completion of a job, a core, and machine will be turned 

off after time interval   
        (latency to turn off), if during 

this interval any other job is not allocated to the machine. 

The reason for introducing this delay is to avoid frequent 

switches between on and off states. If within a reasonably 

short period of time a job arrives, it makes sense to leave the 

machine on. In this scenario, the grid is on for the duration of 

the BoT application.  

4. Related Work 

While power aware scheduling in a single computer is 

widely studied and shown to be effective, green aspects of 

Grid computing are beginning to emerge. 
Develder et al. [4] study dynamic component 

deactivation in the EGEE/LCG Grid. Lammie et al. [18] 

explore energy and performance trade-offs in the scheduling 

of grid workloads on large clusters. The authors analyze the 

effect of automated node scaling, CPU frequency scaling, 

and job assignment. DaCosta et al. [19] present a framework 

based on three components: an on/off model based on an 

energy-aware resource infrastructure, a resource 

management system adapted for energy efficiency, and a 

trust delegation component to assume network presence of 

sleeping nodes. Ponciano and Brasileiro [15] investigate 

energy-aware scheduling, sleeping and wake-up strategies in 

opportunistic grids. Sleeping strategies are employed to 

reduce the energy consumption of the Grid during idleness 

periods; wake-up strategies are employed to choose a set of 

resources to fulfill a workload demand; scheduling strategies 

are employed to decide which tasks to schedule to the 

available machines. 



5. Evaluation Method 

Since the problem is multi-objective in its general 

formulation, two criteria are considered: an approximation 

factor   that represents QoS; and mean energy consumption  

     . 

A good scheduling algorithm should schedule tasks to 

achieve high grid performance, while minimizing energy 

consumption. The problem can be simplified to a single 

objective problem through different methods of objective 

combining. There are various ways to model preferences, for 

instance, they can be given explicitly to specify an 

importance of every criterion or a relative importance 

between criteria. This can be done by a definition of criteria 

weights or criteria ranking by their importance. 

In order to provide effective guidance in choosing the 

best strategy, we perform a joint analysis of two metrics 

according to methodology proposed in [11], and applied for 

the grid scheduling problem in [12]. They introduced an 

approach to multi-criteria analysis assuming equal 

importance of each metric. The goal is to find a robust and 

well performing strategy under all test cases, with the 

expectation that it will also perform well under other 

conditions, e.g., with different grid configurations and 

workloads. 

The analysis is conducted as follows. First, we evaluate 

the degradation in performance (relative error) of each 

strategy under each metric. This is done relative to the best 

performing strategy for the metric, as follows: 

(
               

                 
  )     . Then, we average these 

values, and rank the strategies. 

The best strategy, with the lowest average performance 

degradation, has rank 1. Note that we try to identify 

strategies which perform reliably well in different scenarios; 

that is, we try to find a compromise that considers all of our 

test cases. For example, the rank of the strategy in the 

average performance degradation could not be the same for 

any of the metrics individually or for any of the grid 

scenarios individually. 

We present the metric degradation averages to evaluate 

performance of the strategies, and show if some strategies 

tend to dominate results. The degradation approach provides 

the percent improvement, but does not show negative effects 

of allowing a small portion of the problems to dominate the 

conclusions. 
To analyze possible negative effects of allowing a small 

portion of the problem instances with large deviation to 
dominate the conclusions that based on averages, and to help 
with the interpretation of the data generated by the 
benchmarking process, we presented performance profiles of 
our strategies. 

The performance profile      is a non-decreasing, 
piecewise constant function that presents the probability that 

a performance ratio   
               

                 
 is within a factor   

of the best ratio [17, 23].  

The performance profile of each metric is calculated by 
(10), then they are averaged by (11). 

            
    

⁄      {                } (10) 

 ̅        
∑                      

                 
 (11) 

Where      is the number of experiments and   varies 

from the best metric found to the worst metric found. The 

best strategy should get a higher probability of obtaining a 

low degradation. 

6. Experimental Setup 

All experiments are performed using the Grid scheduling 

simulator tGSF (Teikoku Grid Scheduling Framework). 

tGSF is a standard trace based simulator that is used to study 

Grid resource management problems. We have extended 

Teikoku to include P2P-DG, energy and replication 

capabilities. Design details of the simulator are described in 

[20]. 

Two fundamental issues have to be addressed for 

performance evaluation. On one hand, representative 

workloads are needed to produce reliable results. On the 

other hand, a good testing environment should be set up to 

obtain reproducible and comparable results. 

We consider five Grid scenarios for evaluation. We fix 

       to all grids, getting speed heterogeneity of all 

machines from the uniform distribution     (   

(
  

 
)     (

  

 
)). For 5 grids, we set hm equals to 1, 2, 4, 

8, and 16 [9]. Machine energy consumption is presented in 

Table 1. 

Table 1. Energy Consumption and Time Interval for Operational Modes. 

Notation Value 

          19.53W 

          8.26W 

             175W 

  
             201W 

              89s 

  
        10s 

 

We consider 20 types of workloads setting all BoT sizes 

to          . 20 types of applications are divided in four 

groups that are characterized by different mean execution 

time of tasks ( ̅ ) in each BoT.  ̅  is set to 1000, 5000, 25000 

and 125000. The variation of    of 0%, 25%, 50%, 75% and 

100% relative to  ̅  of the group with uniform distribution is 

considered for the five subgroups in each group. We perform 

an analysis of scheduling strategies under Grid resources 

heterogeneity, tasks heterogeneity, and the granularity of the 

BoT. Varying  ̅ , the number of tasks in BoT is changing 

(Table 2). Hence, we evaluate different Grid scenarios 

varying workload from 36 tasks per machine to 0.29 tasks 

per machine.  



Figure 1 shows some details of the used workload used in 

our study: minimum, maximum, quartile 25%, quartile 75%, 

and median of the tasks group execution time. Figure A in 

Appendix shows a histogram of the task group size 

distribution in the workload. We can see that the task 

resource consumption demand is not equally distributed in 

the BoTs in order to simulate different scenarios. 

 

 
Figure 1. Maximum, 75 quartile, mean, median, 25 quartile and  minimum 

of BoT with   ̅      ,  ̅      ,  ̅       ,  ̅         

 

Note that, by fixing   and  , difference in completion 

time can be credited exclusively to the scheduler. Further, in 

our evaluation, we use the lower bound of the optimal 

makespan  ̆   
  instead of the optimal makespan     

  with 

    
   ̆   

     {
    (  )

    
 
∑   
 
   

 
}  as we are, in 

general, not able to determine the optimal makespan. 

Table 2. Workload 

 ̅  n Mean number of 

tasks per machine 

1000 3600 36 

5000 720 7.2 

25000 144 1.44 

125000 29 0.29 

7. Experimental Results 

This section presents an analysis of the simulation 

results of BoT scheduling strategies using performance 

metrics described in Section 3, experimental setup and 

workload described in Section 6, and evaluation method 

described in Section 5. 

The experimental evaluation of the strategies is 

presented in two steps. In the first step, we compare 

strategies for each metric separately, and present their 

degradations in performance. Then, we perform a joint 

analysis of these metrics and present their degradations and 

ranking considering all metrics average. The best strategy, 

with the lowest average performance degradation, has rank 

1. Note that we try to identify strategies which perform 

reliably well in different scenarios; that is we try to find a 

compromise that considers all of our test cases. For 

example, the rank of the strategy in the average performance 

degradation could not be the same for any of the metrics 

individually or for any of the grid scenarios individually. 

We analyze 4 scheduling strategies:   , WQR1, WQR2, 

WQR3 in 400 experiments, considering 100 scenarios, and 

combining 20 BoT with 5 different grids. 

As expected, the makespan of the schedules is improved 

as the number of replicas increased. If the mean task size is 

decreased from  ̅         to  ̅       the difference in 

degradations becomes neglected (Figure 2). 

 

 

Figure 2. Mean approximation factor vs. scheduling algorithm per mean 
task size 

 

Figure 3. Mean degradation of all metrics (ρ,      ), and their weighted 
combinations for all test cases. 

Table 3. Algorithm degradation per metric 

Algorithm ρ              

 
⁄  

        

 
⁄  

WQ 33.24% 0.07% 16.65% 66.55% 

WQR1 18.98% 24.86% 21.92% 62.82% 

WQR2 5.76% 46.37% 26.07% 57.9% 

WQR3 2.72% 62.60% 32.66% 68.04% 

 

Approximation factor and energy consumption are 

different and conflicting performance goals. As mentioned 

in Section 5, there are various ways to model preferences, 

for instance, they can be given explicitly to specify an 

importance of every criterion or a relative importance 

between criteria. 

Figure 3 shows the performance degradation of the 

approximation factor (ApFactor), and energy consumption 

(Energy) versus replication strategies WQ, WQR1, WQR2, 

WQR3 assuming different weights of makespan criterion 

relatively to the energy criterion. We set the weight to 1, 2, 

and 3. Hence, we assume equal importance of the criteria 

(Energy, ApFactor), makespan importance twice 



(2ApFactor+E) and three times (3ApFactor+E) as much as 

energy consumption.  

Performance degradation of ApFactor is reduced from 

33.2% with WQ to 2.7% with WQR3. Energy degradation 

(Energy) is increased by number of replicas from 0.06% 

with WQ to 62.6% with WQR3. Replication mechanism 

improves QoS but waists computing cycles and power, even 

all replicas are canceled, when a task is completed. With 

increasing task sizes the wasting energy becomes more 

considerable. 

In 2ApFactor+E and 3ApFactor+E scenarios, we 

conclude that the compromise between QoS and energy 

consumption can be found using WQR2 (Figure 3, Table 3). 

 

  

Figure 4. Performance profiles in the interval  7..1   
 

 

 
Figure 5. Performance profiles in the interval  2.1...1  

 

Figure 4 and Figure 5 show the performance profiles of 

the 4 strategies (2ApFactor+E with 4 replication schemes) 

in the interval  7..1  and  2.1...1 , respectively. They 

show the provability of obtaining certain degradation in 

performance of the metrics (  ). Strategies with large 

probability    for smaller   are to be preferred. 

We observe that considered strategies are stable in its 

performance. The probability that they are the winners on a 

given problem within a factor of 2 of the best solution is 

about 0.95, and within a factor of 1.5 is about 0.90. (Figure 

5). If we choose being within a factor of 1.1 as the scope of 

our interest, then either WQ, WQ2 and WQ3 would suffice 

with a probability 0.77, and WQ1 with a probability 0.65, 

(Figure 5). No strategy dominates.  

 8. CONCLUSIONS AND FUTURE WORK 

In this paper, we analyzed a variety of knowledge free 

scheduling algorithms with QoS based on mean 

approximation factor ( ) and mean energy consumption 

(     ) with different grids and workloads. Replication 

strategies enhance a makespan but provide significant 

increase in energy consumption.  

We show that by combining objectives with preferences 

that specify an importance of every criterion or a relative 

importance between criteria, a compromise between better 

QoS and increased energy consumption can be found. 

The proposed strategies can be easily adapted to solve 

online scheduling problem without extra computational 

complexity. However, further study is required to assess 

their actual efficiency and effectiveness. This will be the 

subject of future work. Moreover, scheduling in Grid 

environment, where information about donated machines 

like speed, power efficiency, job execution historical data, 

etc. is available to make allocation decisions, is another 

important issue to be addressed. The communication latency 

is an additional relevant issues to be considered. 
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